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We report quantum and semiclassical calculations of spin current and spin-transfer torque in a free-electron
Stoner model for systems where the magnetization varies continuously in one dimension. Analytic results are
obtained for an infinite spin spiral and numerical results are obtained for realistic domain wall profiles. The
adiabatic limit describes conduction electron spins that follow the sum of the exchange field and an effective,
velocity-dependent field produced by the gradient of the magnetization in the wall. Nonadiabatic effects arise
for short domain walls but their magnitude decreases exponentially as the wall width increases. Our results cast
doubt on the existence of a recently proposed nonadiabatic contribution to the spin-transfer torque due to

spin-flip scattering.
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I. INTRODUCTION

The use of electric current to control magnetization in
nanometer-sized structures is a major theme in the maturing
field of spintronics." An outstanding example is the theoret-
ical prediction of current-induced magnetization precession
and switching in single domain multilayers? and its subse-
quent experimental confirmation in spin-valve nanopillars.?
The physics of this spin-transfer effect is that a single do-
main ferromagnet feels a torque because it absorbs the com-
ponent of an incident spin current that is polarized transverse
to its magnetization. The same idea generalizes to systems
with continuously nonuniform magnetization.*> This realiza-
tion has generated a flurry of experimental® and theoretical
work”!! focused on current-driven motion of domain walls
in magnetic thin films.

The experiments cited just above employ Néel-type do-
main walls with widths w= 100 nm. This length is very large
compared to the characteristic length scales of the processes
that determine the local torque.!>'3 Therefore, it is appropri-
ate to adopt an adiabatic approximation where the spin cur-
rent is assumed to lie parallel to the local magnetization.*>
Surprisingly, the adiabatic prediction for the current depen-
dence of the domain wall velocity®!*!> agrees very poorly
with experiment. This has led theorists’~!! to consider nona-
diabatic effects and experimenters'®!7 to study systems with
domain wall widths that are much shorter (w= 10 nm) than
those studied previously.

Two groups®!> have studied the effect on domain wall
motion of a distributed spin-transfer torque represented by a
sum of gradients of the local magnetization with constant
coefficients. For a one-dimensional magnetization M(x), the
torque function can be written in terms of two vectors per-
pendicular to the magnetization

Ny (x) = ;0 M+ c,M X 9, M. (1)

In general, the coefficients c¢; and ¢, are functions of posi-
tion. The well-established adiabatic piece of the torque is the
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first term in Eq. (1) with a constant coefficient. Consistent
with usage in the literature, we call all deviations from the
adiabatic torque nonadiabatic. Any contributions of the sec-
ond term are then called nonadiabatic. Zhang and Li° derive
a contribution along this second direction in Eq. (1) from a
consideration of magnetization relaxation due to spin-flip
scattering in the context of a spin-density (SD) exchange
model of a ferromagnet.!*'% Their arguments lead them to
the estimate c¢,/c;=0.01. The authors of Ref. 10 report that
a similar value of ¢,/c; produces agreement with experiment
when Eq. (1) is used in micromagnetic simulations.

In this paper, we study the applicability of Eq. (1) to a
free-electron Stoner model with one-dimensional magnetiza-
tion distributions of the form

Mi(x) = M (sin 6 cos ¢,sin € sin ¢,cos 6). (2)

In Eq. (2), the polar angle 6(x) is measured from the positive
z axis, ¢(x) is the azimuthal angle in the x-y plane, and M,
is the saturation magnetization. We begin with the spin cur-
rent and spin torque for an infinite spin spiral with constant
pitch. This system turns out to be perfectly adiabatic; the
torque is described by Eq. (1) with ¢,=0. The same is true
for realistic domain walls of the sort usually encountered in
experiment. Nonadiabatic effects appear only for very nar-
row walls. In that case, the torque is nonlocal and cannot be
written in the form Eq. (1). The nonadiabatic torque de-
creases exponentially as the wall width increases for all re-
alistic domain wall profiles. Finally, our analysis casts doubt
on the existence of a nonadiabatic contribution to the torque
due to spin-flip scattering proposed recently by Zhang and
Li.

The remainder of the paper is organized as follows. Sec-
tion II describes our Stoner model and the methods we use to
calculate the spin current and spin-transfer torque. Section III
reports our results for an infinite spin spiral and Sec. IV does
the same for one-dimensional domain walls that connect two
regions of uniform magnetization. Section V relates these
calculations to previous work by others. Section VI discusses
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the effects of scattering. We summarize our results and offer
some conclusions in Sec. VII. Two appendices provide some
technical details omitted in the main body of the paper.

II. MODEL AND METHODS

The free electron Stoner model provides a first approxi-
mation to the electronic structure of an itinerant ferromagnet.
The Hamiltonian is

hZ
H=- %Vz - MO Bex(x)’ (3)

where o=(0,,0,,0,) is a vector composed of the three Pauli
matrices and u=ghe/2mc. The magnetic field B (x) is ev-
erywhere parallel to M(x) but has a constant magnitude.'8
That magnitude is chosen so the Zeeman splitting between
the majority and minority spin bands reproduce the quantum
mechanical exchange energy in the limit of uniform magne-
tization,

Eo = 2u|Bgy| = h2ki/m. (4)

If EF=ﬁ2k12p/ 2m is the Fermi energy, the constant kg in Eq.
(4) fixes the Fermi wave vectors for up and down spins, kj.
and k, from
Ki=kE+ k3. (5)

Given B (x), we use both quantum mechanics and a
semiclassical approximation to calculate the spin accumula-
tion, spin-current density, and spin-transfer torque. The
building blocks are the single-particle spin density s,(x,k,)
and the single-particle spin-current density'® Q. (x,k,) for an
up/down (=) electron with longitudinal wave vector k,.

Summing over all electrons and using the relaxation time
approximation gives the nonequilibrium majority and minor-
ity spin density s,(x) and spin current density Q.(x) in the
presence of an electric field EX,

s.(x) = f [ fi(k - %Tx) - fi(k)]si(x,kx)fk

eE

Q:(x) = f |:f1<k - 7752) _f:(k)]Q:(x’kx)d3k~ (6)

Our use of the function f,(k)=0(kz—|k|) implies that the
distribution of electrons outside the region of inhomoge-
neous magnetization are characteristic of the zero-
temperature bulk.?? We shall expand this point and comment
on the general correctness of Eq. (6) in Sec. VL

The sum s(x)=s,(x)+s_(x) is the total spin accumulation
(spin density) and Q(x)=Q.(x)+Q_(x) is the total spin-

current density. Finally, the distributed spin-transfer torque
12
is

Ng(x) = - 2,Q(x). )

The adiabatic approximation* to the spin dynamics leads to a
spin-current density that is proportional to the local magne-
tization, Q,4(x) «M(x). This means that
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FIG. 1. (Color online) Equilibrium (zero-current) results: (a)
Cartesian components of an arbitrarily chosen magnetization M(x)
(lines); Cartesian components of the calculated spin density seq(x)
(solid dots); (b) exchange torque (solid line) and calculated spin-
transfer torque (solid dots).

Naa(x) o« 9, M (x). (8)

A main goal of this paper is to study the extent to which the
spin-transfer torque associated with real domain wall con-
figurations satisfies Eq. (8).

A. Quantum

In light of Eq. (2), the exchange magnetic field that enters
the Hamiltonian in Eq. (3) is

B, (x) = B.,(sin 6 cos ¢,sin € sin ¢,cos 6). 9)

For a given energy, the eigenfunctions for a conduction elec-
tron with wave vector k take the form W_(r,k)
=, (x,k,)e*k= where the spinor i, (x,k,) satisfies

&’ kz( cos @ e gin 9) ) (10)
T d® P\etsing  —cos 0 Yoo = e
In this expression,
K=k Tk, (11)

and = refers to majority/minority band electrons. The single-
electron spin density and spin-current density are'?

i
5. (x,k,) = 52 Yo o(X,k) O g p(x,K) (12)
a.B
and

h? « d
+ ak == I + 9k aB; P+ ,k .
Q_()C x) 2m§B m lr/l_,a(x x)a' ,ﬁdx 'r//_,ﬁ(x x)

(13)

As a check, we used this formalism to calculate the equi-
librium (zero applied current) spin density s (x) and equi-
librium spin-current density Q.4(x) for a magnetization dis-
tribution chosen arbitrarily except for the constraint that
I[M(x)| be uniform. The densities Sey(x) and Qeq(x) are ob-
tained by retaining only the second term in square brackets
in Eq. (6).2° The lines in Fig. 1(a) are the Cartesian compo-
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nents of the imposed M(x). The solid dots in Fig. 1(a) show
that the spin density s.q(x) is parallel to M(x), as expected.
Similarly, the electron-mediated spin-transfer torque should
equal the phenomenological exchange torque density dis-
cussed by Brown.?! This is confirmed by Fig. 1(b), which
shows that Ng4(x) is proportional to M X M"(x) for the M (x)
shown in Fig. 1(a).

B. Semiclassical

A semiclassical approach to calculating the spin-current
density is useful for building physical intuition. Accordingly,
we write an equation of motion for the spin density of every
electron that contributes to the current. This idea has been
used in the past, both semiquantitatively* and qualitatively.’
Our derivation is based on the behavior of an electron with
energy E that moves along the x axis through a uniform
magnetic field B, =B.Z. The wave function for such an
electron is

aeik+x
¢(x,E) = ( b ) , (14)
where
k2 =2mE/h? + k. (15)

We compute the spin density s(x,E) and the spin-current
density Q(x,E) for this electron using the right sides of Egs.
(12) and (13), respectively, with i, — ¢.

It is straightforward to check that the components of these
densities transverse to the magnetic field satisfy the semi-
classical relations

0.=s5dv) and Q,=syv), (16)

where (v) is the velocity

W)= =), (17

Moreover, the transverse components of the spin density sat-
isfy

ds hklz3
VT
ds, ki
)2 =- —mBsx. (18)

These equations are the components of the vector equation

ds ki o«
—=— 25 X B,
dx (k)

(19)
where ]§CX=2.

We now make the ansatz that all three Cartesian compo-
nents of the semiclassical majority and minority spin densi-
ties s.(x,k,) satisfy Eq. (19) when the direction of the mag-

netic field varies in space. Specifically, if B (x)=BBe,(x),
we suppose that
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FIG. 2. (Color online) (a) Cartesian components of an imposed
magnetization M(x) used in the other panels; (b) comparison of
quantum (lines) to semiclassical (solid dots) calculations for the
Cartesian components of the spin density s(x); (¢) same comparison
for the Cartesian components of the spin-current density Q(x).

dsi('x»kx) k%i‘ D

dx - <k> si(x’kx) X Bex(x)’ (20)
where k, and k_ for s,(x,k,) are defined by Eq. (15) with
E=h*(k2—kg)/2m.?? Similarly, k, and k_ for s_(x,k,) are de-
fined by Eq. (15) with E=A>(k*+k3)/2m. With suitable
boundary conditions, we solve the differential Eq. (20) to
determine the semiclassical, one-electron spin densities. The
total, spin-resolved, spin densities follow by inserting these
one-electron quantities into

5,00 = f [fi(k - %x) —f¢<k>}si(x,kx)<%d3k.

21

This equation differs from Eq. (6) by the weighting factor
k,/{k).?* This factor guarantees that the flux carried by each
electron is proportional to its velocity (see Appendix A). This
is confirmed by Fig. 2(b) which shows quantitative agree-
ment between a fully quantum calculation of s(x) using Egs.
(10), (12), and (6) and a semiclassical calculation using Egs.
(20) and (21).

In light of the foregoing, it is reasonable to calculate the
semiclassical single-electron spin-current density from

ik,

m

Q.(x.k,) =s.(x,k,) (22)
and use the second equation in Eq. (6) to find Q.(x). The
correctness of this prescription is illustrated in Fig. 2(c).

II1. SPIN SPIRAL

As a preliminary to our discussion of domain walls, it is
instructive to discuss the spin density and spin-current den-
sity for a spin spiral—an infinite magnetic structure where
the direction of the magnetization rotates continuously as
one moves along a fixed axis in space. Spin spirals occur in
the ground state of some rare earth metals?* and also for the
v phase of iron.”> Here, we focus on a spiral with uniform
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FIG. 3. (Color online) Cartoon of a spin spiral where the mag-
netization (arrows) rotates uniformly in the x-z plane of a fixed
coordinate system where I\A/[(x)Aizcos 6. The inset shows a local
coordinate system where M(x) always points along the z’ axis.

pitch p where the magnetization rotates in the x-z plane, i.e.,
in Eq. (2),

O(x)=px and ¢(x)=0. (23)

A cartoon version of this M(x) is shown in Fig. 3. This figure
also defines a local coordinate system that will be useful in
what follows. The system (x’,y’,z’) rotates as a function of
x so the magnetization M(x) always points along +z'.
Calvo® solved Eq. (10) to find the eigenstates and
eigenenergies of this spin spiral. In our notation,

h? 1 7
e.(k) = ﬂ(kz + sz +\(kp)* + k4) , (24)
and
l/li(k,l‘) — eik-re—izrya/Ze—i(rxa/Z D (25)
where
k.p
sin @ = ———, (26)
V(kp)* + K
and

1 0
o)) e

From these results, it is easy to compute the single-electron
spin densities defined in Eq. (12). In the local (x',y’,z’)
frame,

s',(x,k) = £(0,sin a,cos a). (28)

The corresponding calculation of the single-electron spin-
current densities Eq. (22) is straightforward but tedious and
not very illuminating. Therefore, we pass directly to the total
spin-current density calculated by summing over all elec-
trons as indicated in the second line of Eq. (6). Again in the
local (x’,y’,z") frame,

Q,(-x):A(pJCB)(O’O’l)’ (29)

where A(p,kg) is a constant. This shows that Q(x) o M/(x),
i.e., the spin-current density for a free-electron spin spiral is
perfectly adiabatic. Wessely et al.?’ found consistent results
in their density functional calculation of the steady-state
spin-current density associated with the helical spin-density
wave in erbium metal. We emphasize that Eq. (29) is inde-
pendent of pitch for an infinite spin spiral. As we discuss
below, a similar independence does not hold for domain
walls. In that case, wide walls are adiabatic, but narrow ones
are not.
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FIG. 4. (Color online) Electrons (wave vector k,) and holes
(wave vector —k,) move in an effective field that is the sum of the
exchange field B (x)lIZ’ and a fictitious, velocity-dependent “gra-
dient” field induced by the spatial dependence of the exchange field.
The spins align to the total effective field in an infinite spin spiral.
The x axis lies in x’-z’ plane.

The semiclassical formula Eq. (22) provides an appealing
way to understand the adiabaticity of the spin-current density
in the spin spiral defined by Eq. (23). The key point is that
the angle « in Eq. (26) which fixes the direction of s,(x,k,)
in Eq. (28) is positive when k, is positive and negative when
k, is negative (Fig. 4). Moreover, for every k, electron that
contributes to the shifted Fermi surface sums in Eq. (6), there
is a contribution from a —k, hole. Now, a hole has opposite
spin density to an electron and the spin-current density Eq.
(22) contains an additional factor of k,. Therefore, the two
spin-density vectors in Fig. 4 subtract to give a net spin
density along § while the corresponding two spin-current
density vectors add to give a net spin-current density along
z'. This occurs for all k, in the sums so Q(x) aligns exactly
with the local exchange field and thus with the local magne-
tization.

The opposite situation occurs for fully occupied states be-
low the Fermi energy. The spins of the forward and back-
ward moving electrons combine to produce a net moment
aligned with the exchange field, as necessary for self-
consistency. Further, the spin currents, with the additional
factor of k, add to give a net spin current along ¥, so that its
gradient gives the correct form of the phenomenological ex-
change torque density.

To summarize: an electric current that passes through a
spin spiral generates a spin accumulation with a component
transverse to the magnetization. The spin-current density
possesses no such component due to pairwise cancellation
between forward and backward moving spins of the same
type (majority or minority). Moreover, since the cancellation
occurs within each band, the final result is insensitive to the
details of intraband scattering.

It remains only to understand the origin of the misalign-
ment angle @. Why does each spin not simply align itself
with B.,? Berger* was the first to notice this fact and the
physics was made particularly clear by Aharonov and
Stern.?® These authors studied the adiabatic approximation
for a classical magnetic moment that moves in a slowly vary-
ing field B(x). Not obviously, the moment behaves as if it
were subjected to a effective magnetic field B.g(x) that is the
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sum of B, (x) and a fictitious, velocity-dependent, “gradient”

field B,(x) that points in the direction Vﬁ(x) X ﬁ(x). For our
problem,

N
Beir= By + 2k BB B.,. (30)
2mu dx
The presence of this gradient field is apparent from Eq. (24)
where the square root is proportional to |B.y|. The adiabatic
solution corresponds to perfect alignment of the moment with
B.g(x). This alignment is indicated in Eq. (28) and in Fig. 4.
More generally, the expected motion of the magnetic mo-
ment is precession around B g(x). Nevertheless, as indicated
above, the total spin-current density for the spin spiral aligns
with B, (x) (which is the conventional definition of adiaba-
ticity for this quantity) when the net effect of all conduction
electrons is taken into account.

IV. DOMAIN WALLS

Our main interest is the spin-transfer torque associated
with domain walls that connect two regions of uniform and
antiparallel magnetization. A realistic wall of this kind can be
described by Eq. (2) with?’

0(x) = /2 — arcsin[tanh(x/w)] (31)

The wall is Néel-type if ¢(x)=0 and Bloch-type if ¢(x)
=m/2. We will speak of the domain wall width w as “long”
or “short” depending on whether w is large or small com-
pared to the characteristic length

Er1 &k
L=—f—=—1. (32)
Eex kF kB
Intuitively, the adiabatic approximation should be valid
when w> L. When applied to Eq. (6), the predicted adiabatic
spin-transfer torque for our model is

h neEt

Nug) == 27— aM(x), (33)

where n is the electron density, and # is the polarization of
the current. The calculations required to check this for long
domain walls are difficult quantum mechanically (for nu-
merical reasons) but straightforward semiclassically. At the
single-electron level, adiabaticity again corresponds to align-
ment of the spin moment with the effective field defined in
Eq. (30). The results for a typical long wall (Fig. 5) demon-
strate that summation over all electrons produces alignment
of Q(x) with M(x) so the adiabatic formula Eq. (33) is in-
deed correct in this limit.

For short walls, we have carried out calculations of Ng(x)
both quantum mechanically and semiclassically. The two
methods agree very well with one another (see Fig. 2) but
not with the proposed form Eq. (1). Bearing in mind that,
when the magnetization changes, X’ points along J M and §
points along M X d M, our result for the spin-transfer torque
is

Ni(x) = Nyg(x) + a(0)X" + b(x)§. (34)

PHYSICAL REVIEW B 73, 054428 (2006)

0.004
5
)
§ 0
:
s
=2, -0.004
g Nad
S

N
-500 0 500

FIG. 5. Distributed spin-transfer torque for a long Néel domain
wall with w=50 and L=6.25 (kp=1 and kz=0.4): semiclassical cal-
culation of Ny (solid dots) compared to Eq. (33) for Ny(x) (solid
curve).

N, (x) differs from N,4(x) because gradients in the gradi-
ent field induce single-electron spin moments to precess
around B q(x) rather to align perfectly with it. Figure 6
shows a(x) and b(x) as calculated for a typical short domain
wall. The associated torques lie in the plane of the magneti-
zation and perpendicular to that plane, respectively. These
nonadiabatic contributions to the torque are both oscillatory
functions of position that do not go immediately to zero
when the magnetization becomes uniform. In other words,
a(x) and b(x) are generically nonlocal functions of the mag-
netization M(x). The positive-valued function that falls to
zero at the edges of the domain wall (light solid curve in Fig.
6) is the second function in Eq. (1) with ¢, chosen to match
b(x) at their common maximum. Evidently, the proposed
torque function Eq. (1) gives at best a qualitative account of
the out-of-plane nonadiabatic torque.

A convenient measure of the degree of nonadiabaticity of
the spin-transfer torque is

o= maxlb)] (35)
max|Nyq(x)|

Figure 7 plots this quantity as a function of scaled domain
wall width w/L on a log scale. The observed exponential

0.05

domain wall profile

-0.05

torques (arbitrary units)

FIG. 6. (Color online) Distributed spin-transfer torque for a
short Néel domain wall with w=4 and L=6.25 (kp=1 and kz=0.4):
in-plane piece a(x) (heavy solid curve); out-of-plane piece b(x)
(dashed curve); adiabatic prediction (light solid curve); second term
in Eq. (1) scaled to match the maximum of b(x) (light solid curve).
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FIG. 7. Nonadiabaticity in Eq. (35) versus wall width scaled by
the characteristic length in Eq. (32). Note the logarithmic scale.

decrease of the nonadiabatic torque as the wall width in-
creases can be understood from the work of Dugaev et al.>
These authors treat the gradient field in Eq. (30) as a pertur-
bation and calculate the probability for an electron in a (k, T)
state to scatter into a (k| ) state in the Born approximation.
If we choose k, and k| as kj. and kj, respectively, their results
imply that the probability P that a majority electron retains
its spin and becomes a minority electron as it passes through
a domain wall is

P o< exp(— yw/L), (36)

where vy is a constant of order unity. This rationalizes the
result plotted in Fig. 7 because the magnitude of the minority
spin component determines the amplitude of the spin preces-
sion around B g(x) and thus the magnitude of the nonadia-
batic component of s and Q in Eq. (22). In fact, Ngoc 1/w, so
it is the case that

max|b(x)| o % exp(— yw/L). (37)

The slope of the straight line in Fig. 7, i.e., the value of
the constant y in Eq. (36) depends on the sharpness of the
domain wall. Using Eq. (31) and other simple domain wall
profile functions, it is not difficult to convince oneself that a
suitable measure of domain wall sharpness is the maximum
value of the second derivative #'(x) for walls with the same
width. The numerical results shown in Fig. 8 confirm this to
be true. The sharper the domain wall, the less rapidly the
nonadiabatic torque disappears with increasing domain wall
width.

V. RELATION TO OTHER WORK
A. Waintal and Viret

Waintal and Viret’ (WV) used a free-electron Stoner
model and the Landauer-Biittiker formalism to calculate the
spin-transfer torque associated with a Néel wall with magne-
tization Eq. (2) and
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FIG. 8. Dependence of y in Eq. (36) on domain wall sharpness:
Squares are calculated points. Straight line is a guide to the eye that
passes through the origin.

0, x<-w
0x)=(72)(xIw+1), —w<x<w (38)
T, x> w.

For this wall profile (which is exactly one half-turn of a
uniform spin spiral in the interval —-w<x<w), WV reported
oscillatory nonadiabatic contributions to the torque similar to
our functions a(x) and b(x). This contrasts with the perfect
adiabaticity we found in Sec. III for the infinite spin spiral.
Moreover, the amplitude of the nonadiabatic torque reported
by WV for this wall decreases only as 1/w rather than
(1/w)exp(—yw/L) as we found above.

The disparities between Ref. 7 and the present work all
arise from the nonphysical nature of the domain wall Eq.
(38). Specifically, the divergence of #'(x) at x=+w locates
this wall at the origin of Fig. 8 where y=0. This brings their
result into agreement with Eq. (37). Any rounding of the
discontinuity in slope at x=+w would yield a finite value for
¢"(x) and thus a nonzero value of y.

In Appendix B, we calculate the spin-transfer torque for
the wall Eq. (38) using our methods. Qualitatively, the pure
1/w behavior of the nonadiabatic torque comes from the fact
that there is a sudden jump in 6'(x) at x==w. There is a
corresponding jump in the direction of B.g(x) as defined by
Eq. (30). Spins propagating along the x axis cannot follow
this abrupt jump and thus precess around the post-jump field
direction with an amplitude determined by the sine of the
angle between the before-and-after field directions. The latter
is proportional to the jump in &’ (x), which is /2w for the
wall Eq. (38).

B. Zhang and Li

In spin spirals and long domain walls, we find that the
nonequilibrium spin current is adiabatic, i.e., Q(x) is aligned
with M(x) [or B (x)]. At the same time, we find in both
cases that the nonequilibrium spin density s(x) is not aligned
with the magnetization; there is a component of s(x) trans-
verse to M(x). The corresponding transverse component of
the spin-current density cancels between pairs of electrons
moving in opposite directions. Zhang and Li® found exactly
the same form of nonequilibrium spin accumulation [called
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Sm(x) by them] using a phenomenological theory. They pro-
posed that this nonequilibrium spin density relaxes by spin-
flip scattering toward alignment with the magnetization.
Such a relaxation would produce a nonadiabatic torque of the
form given by the second term in Eq. (1). The correctness of
this predicted nonadiabatic torque depends on the correctness
of the assumed model for relaxation of transverse spin accu-
mulation through spin-flip scattering.

Zhang and Li assume a form for the rate of spin-flip scat-
tering, om/ 7, that has been used successfully as a phenom-
enological description of longitudinal spin relaxation in sys-
tems with collinear magnetization. While it is plausible to
extend this form, as they do, to describe transverse spin re-
laxation in noncollinear systems, our calculations indicate
that it is not likely to be correct. Our reasoning is simplest to
appreciate for a spin spiral with small pitch p. In this limit,
Eqgs. (26) and (28) show that the transverse component of the
spin for every electron eigenstate is proportional to its veloc-
ity. This means that the majority band electrons contribute a
transverse spin accumulation and an electric current that are
proportional to one other. The same is true, separately, for
the minority band electrons. This conclusion is independent
of the details of the electron distribution. Therefore, for a
fixed total current, it is impossible to relax the transverse
spin accumulation without changing the longitudinal polar-
ization of the current. No such change occurs in the model in
Ref. 9, casting doubt on the validity of the form of the spin-
flip scattering assumed there.

Microscopic considerations also argue against this form of
the relaxation. As we have emphasized, the natural basis for
an electron spin moving through a noncollinear magnetiza-
tion is not along the local exchange field B.,(x), but rather
along a local effective field B.g(x), which includes the cor-
rections due to the gradient of the magnetization [see Eq.
(30)]. Any spin that deviates from parallel or antiparallel
alignment with the effective field will precess around the
effective field, and on average will point parallel or antipar-
allel. Thus, we expect that there is no tendency for electron
spins moving in a nonuniform magnetization to align them-
selves with the local exchange field B, (x) by spin-flip scat-
tering (or any other mechanism). Rather, the adiabatic solu-
tion is precise alignment of their spins with the local
effective field B g(x). Without further microscopic justifica-
tion, we believe that the phenomenological form of spin-flip
scattering assumed in Ref. 9 should not be used in systems
with noncollinear magnetizations. Hence, this analysis ar-
gues against the existence of the resulting contribution to the
“nonadiabatic” torque from spin-flip scattering.

VI. SCATTERING

We do not explicitly treat scattering in any of our calcu-
lations. However, the distribution function in Eq. (6), a
shifted Fermi distribution, is an approximate solution of the
Boltzmann equation in certain limits. First, the electric field
must be small enough that the transport is in the linear re-
gime. Then, the appropriate limits are determined by three
important length scales, the Fermi wavelength, the mean free
path, and the characteristic length of the structure, either the
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inverse pitch of the spin spiral or the width of the domain
wall. In all cases, we consider the limit in which the Fermi
wavelength is short compared to the mean free path. This
limit allows the description of the states of the system in
terms of the eigenstates of the system in the absence of scat-
tering. Different limits apply to the cases of domain walls
and of spin spirals because the distribution functions are in-
terpreted differently for these two structures.

We use the Boltzmann equation in two different ways.
When the mean free path is much longer than the character-
istic size of the structure, the distribution function describes
the occupancy of the eigenstates of the entire system. This
distribution function is independent of the spatial coordinate
and we refer to this approach as global. In the opposite limit,
the distribution function is spatially varying and describes
the occupancy of eigenstates of the local Hamiltonian, which
includes the exchange field and the gradient field. We refer to
this approach as local, as the distribution function can vary
spatially.

For spin spirals, the distribution functions are shifted
Fermi functions of the eigenenergies of the spin spiral. In the
limit that the pitch of the spiral is much shorter than the
mean free path, the shifted distribution given in Eq. (6) is a
solution of the global Boltzmann equation in the relaxation
time approximation. The distribution function also becomes
a solution in the opposite limit, where the mean free path is
much shorter than the pitch of the spiral. In this limit, the
Boltzmann equation is considered locally rather than glo-
bally. At each point in space the states are subject to the local
exchange field and the local gradient field. The distribution
function is defined for states that are locally eigenstates of
the sum of the fields. The local distribution function is given
by the adiabatic evolution in the rotating reference frames of
the distribution function specified in Eq. (6). In the limit that
the pitch of the spiral goes to infinity, this distribution func-
tion locally solves the Boltzmann equation in the relaxation
time approximation. Thus, for spin spirals, the distribution
function given in Eq. (6) is a solution in the limits that the
mean free path is much greater than or much less than the
pitch. We speculate that the corrections in between these lim-
its are small.

Domain walls are not uniform in the way that spin spirals
are, so the distribution functions need to be given a different
interpretation. For these structures, the distribution function
is determined from the properties of the states in the leads.
For example, in the Landauer-Biittiker approach to this
problem,’ scattering is ignored in the domain wall itself and
confined to the “leads” adjacent to it (these leads are as-
sumed to be “wide” and function as electron reservoirs). An
applied voltage is assumed to raise the energy of electron
states in one lead relative to the other. Thus, in a formula like
Eq. (6), the distribution function is shifted in energy rather
than in velocity.

We also do not treat scattering within the domain wall
explicitly, but we assume that the wall is bounded by long
leads that are as “narrow” as the domain wall region and
have resistances per unit length that are comparable to that of
the domain wall region. Thus, the distribution of the states
approaching the domain wall region is similar to the distri-
bution of states in an extended wire, i.e., to that given by Eq.
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(6). For domain walls in long wires, the distribution function
for left-going states is determined by the right lead and for
right-going states by the left lead. With this interpretation,
the distribution given in Eq. (6) is a solution in the limit that
the scattering in the domain wall is weak, that is, the domain
wall is much narrower than the mean free path.

The distribution in Eq. (6) is also a solution in the limit
that the mean free path is much shorter than the domain wall
width. Since the Fermi wavelength is much shorter than the
mean free path, it is much less than the domain wall width.
In this case, quantum mechanical reflection is negligible and
the quantum mechanical states are closely related to the
semiclassical trajectories. With a similar interpretation of the
distribution function as was made for the spin spirals in this
limit, the same conclusion holds for the domain walls.

VII. SUMMARY AND CONCLUSION

In this paper, we analyzed spin-transfer torque in systems
with continuously variable magnetization using previous re-
sults of Calvo®® for the eigenstates of an infinite spin spiral
and of Aharonov and Stern?® for the classical motion of a
magnetic moment in an inhomogeneous magnetic field.
Adiabatic motion of individual spins corresponds to align-
ment of the spin moment not with the exchange field (mag-
netization) but with an effective field that is slightly tilted
away from the exchange field by an amount that depends on
the spatial gradient of the magnetization. Nevertheless, when
summed over all conduction electrons, the spin-current den-
sity is parallel to the magnetization both for an infinite spin
spiral and for domain walls that are long compared to a char-
acteristic length L that depends on the exchange energy and
the Fermi energy.

Nonadiabatic corrections to the spin-transfer torque occur
only for domain walls with widths w that are comparable to
or smaller than L. The nonadiabatic torque is oscillatory and
nonlocal in space with an amplitude that decreases as
wl exp(—=yw/L). The constant v is largest for walls with the
sharpest magnetization gradients. This suggests that nonadia-
batic torques may be important for spin textures like vortices
where the magnetization varies extremely rapidly.

Using microscopic considerations, we have also argued
that the role of the gradient field to tilt spins away from the
exchange field casts serious doubt on a recent proposal by
Zhang and Li° that a non-negligible nonadiabatic contribu-
tion to the torque arises from relaxation of the nonequilib-
rium spin accumulation to the magnetization vector by spin-
flip scattering. We conclude that, if the second term in Eq.
(1) truly accounts for the systematics of current-driven do-
main wall motion, the physics that generates this term still
remains to be identified.

Finally, we have carefully discussed the role of scattering
in this problem with particular emphasis on the approxima-
tion used here to neglect scattering within the domain wall
itself but to treat the adjacent ferromagnetic matter as bulk-
like. We argue that this approximation is valid in limits that
either include or bracket the most interesting experimental
situations and therefore is likely to be generally useful.
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APPENDIX A: SEMICLASSICAL WEIGHTING
FACTOR

The weighting factor k,/(k) used in Eq. (21) brings the
amplitude of the dynamic (transverse) part of the semiclas-
sical, one-electron spin density into accord with the corre-
sponding quantum mechanical amplitude. This can be seen
from a simple model problem that we solve both quantum
mechanically and semiclassically. Namely, a spin initially
oriented along the +X direction propagates from x=— to x
= through a magnetization that changes abruptly from
M(x)=M(1,0,0) for x<0 to M(x)=M(0,0,1) for x=0. For
x<<0, the eigenstates are

_ 1 1 ikax — 1 1 ik x
¢T(X)=E(1>ekT', ¢¢(x)=v—5<_l)eki, (A1)

and for x>0, the eigenstates are

1) . 0) .
(ot -
If we choose the incoming state as
x) = ¢ (x), (A3)

the reflection and transmission amplitudes for spin flip
(r1,.t;) and no spin flip (ry;,;;) are determined by match-
ing the total wave function and its derivative at x=0,

i)+ () =t gl (A4

by = k()" = ry k()" = kg + 1y k]
(AS)
It is straightforward to confirm that these equations are
solved by
K-k

2k (k, — k)
T R kok, K
T ™l l

n=7 2°
kT+6kai+k1

42k ik, 22k (ky + k)
N ekk 2 T Rrekk e A0
T ™l l T 7] !
We are interested in the transmitted wave function,
s + et
wtr(x)=tﬁ¢T(X)+tu¢l(x)= fookx ) (A7)
I

which carries a spin density,

ﬁ .
g (x) = E[Ztﬁt” cos(okx), 214ty sm(ékx),(t% - t%l)],

(A8)

where Sk=k;—k|. Notice that the oscillation is transverse to
the x— o magnetization and of amplitude 7zt .
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FIG. 9. The semiclassical weighting factor for the spin density.
Solid (dotted) curve is the expression on the left (right) side of the
~ symbol in Eq. (A10).

If we analyze the same problem semiclassically, a major-
ity electron propagates freely until it reaches x=0. At that
point, the electron feels a magnetization perpendicular to its
magnetic moment and begins precession around that magne-
tization with unit amplitude. The associated spin density is

sC ﬁ :
Sy (%) = 5[cos(5kx),sm(5kx),0]. (A9)
Comparing Eq. (A8) to Eq. (A9) shows that the transverse

oscillation amplitudes will be equal if we multiply the semi-
classical result by the weighting factor

_OR2kik (ki +k) 2k ke
T = =Ty

(A10)

Figure 9 illustrates the quality of the approximation in Eq.
(A10) if we identify k; and k| with k}. and k7. (respectively)
in Eq. (5). Of course, k, plays the role of k; in Eq. (21).

APPENDIX B: SPIN SPIRAL DOMAIN WALL

The semiclassical spin density associated with electron
propagation through a magnetization like Eq. (2) is the solu-
tion of Eq. (20) with suitable boundary conditions. Choosing
¢=0, we simplify the notation by using the prefactor
)\:ké/ (k) and an overdot for d/dx to write the components
of Eq. (20) as

$,=—\sy cos 6 (B1)
§y=—N\s_sin 6+ \s, cos 0 (B2)
§,=N\s, sin 6. (B3)

In the local frame (x',y’,z’) defined in Fig. 3, the compo-
nents of the spin density,
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s, =s,c08 O—s,8in 6, (B4)
5, =5y, (B5)
5. =s,sin 6+ s, cos 6, (B6)
satisfy

Si=—\s —s.6, (B7)
§5= s, (BY)
§l=s.0. (B9)

Eliminating s, gives
§L+ N2+ s +5.0=0. (B10)

The differential Eq. (B10) cannot be solved analytically
for realistic domain wall profiles. However, it is easily solv-
able for the wall defined by Eq. (38) where one-half turn of
a spin spiral with pitch p=m/2w connects two regions with
uniform (but reversed) magnetization. In the limit 7/w <<\
of a long wall, the components of the spin density transverse
to the wall magnetization for the range x € [-w,w] are (after
multiplying the weighting factor k,/(k) for the semiclassical
approach)

iy ke T
si(x) = 2 ) 2 sin[A(x = w)],
s, (x) = %%le{l —cos[Nx+=w)]}, (B11)

where the plus (minus) refers to electrons that flow from left
(right) to right (left). The associated spin-current density and
spin-transfer torque carried by each electron follow from Eq.
(22) and Eq. (7), respectively. Bearing in mind that X’ varies
with x, our final result for the torque (in the local frame)
generated by a single electron moving from right to left is

N === T _cos Mx—a) R,
=5 <k>2w[ cos Mx—a)lx
hhk, k,
y= - sinA(x-a)§. B12
Y2 m (k2w sinMx—a)y (B12)

This may be compared with the results of Ref. 7 which per-
tain to the entire ensemble of conduction electrons.
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